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Abstract. A general solution of the field equations of general relativity theory has been 
obtained for an elastic sphere of constant density. The equations have been solved under 
the condition that the pressure is zero at the boundary of the sphere and the density is 
constant inside this boundary. The present investigation represents an attempt to apply 
Rayner's theory of elasticity in general relativity for the construction of realistic models. 

1, Introduction 

Einstein's interior field equations in the case of elastic bodies have been defined by 
Rayner (1963) as follows : 

(1.1) Rij - 3Rgij = - PAiAj  + +C$(gkl - g:~) E - T j ,  

where p is the proper density, g i j  = g i j + A i A j ,  %i is the four velocity, 

p = -GrJrAS 2 0,  g,,X3." = - 1. 

g i j  is of signature (+ + + -). Cfj is an elastic tensor and has been defined as 

(1.2) 0 O c r s  
C i j k l  = g k r g l s  i j  

and the tensors g i j ,  g:, satisfy following conditions : 
(i) Time dependence and orthogonality conditions 

SACijkl = 0 

= 0, 

where & A  is the Lie derivative with respect to the vector field Ai 

CijklrlLl = 0 

g p  = 0. 

Cijkl = c. .  = c.. = Ckli j  

g; = gjq.. 

(ii) Symmetry conditions : 

J t k l  lJlk 

(iii) The tensor 

= cijkl  ( A  = i, j ;  B = k, 1) (1.6) 
is a matrix of rank 6 and & is a positive semi-definite matrix of rank 3. 
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(iv) Cijkl is isotropic so that it admits the representation of the form 

Cijkl = V g c g : !  + /&gi + @ y k )  

v , j ~ j  = p L , j a j  = 0. 

(1.7) 

(1.8) 

where v and ,U are scalars such that 

2. Field equations and boundary conditions 

We shall consider physical systems which are static as well as spherically symmetric. 
We can then write our line element in the standard form 

(2.1) ds2 = + ea dr2 + r2 de2 + r2  sin28 d42  - eB dt2, 

where a and j are functions of r only. 
The field equations for the line element (2.1) are given by 

T22 = T33, (2.4) 

where prime denotes differentiation with respect to r .  

are continuous. 
We assume that density is constant inside the sphere and gravitational potentials 

3. Solutions of the field equations 

From (1.4), 

Cijkl,?' = 0 or Cijk4 = 0 since 1.' = (0,0,0,A4) 

g $ j  = 0 or 9iO4A4 = 0, that is, = 0. 

From (1.6) 

1971 g72 973 9:4 1 

I E t1  E t 2  E t 3  e 4  I 
Let Tx denote the tangent space of a point (x) of V4 and Sx the subspace of Tx 

orthogonal to A'. Then Sx is the spatial rest frame of a particle of the elastic body at 
(x). The tensors g$ and gij each define matrices for undeformed and deformed elastic 
bodies respectively in Sx. 
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In a comoving coordinate system, we can satisfy (1.2) to (1.5) by taking g: and C$ as 
functions of space coordinates only. We regard them as known. v and p are scalars 
and we also regard them as known. 

2: is the metric for the undeformed elastic body and hence we take it as flat, namely 

8 1  = 1 ,  g 2  = r2,  g!3 = r2  sin2& (3.3) 

From equation (1.8) we have 

The only nonzero surviving components of Cijkl are Cl 1 ,  c1122, cl133 c2222, 
c 2 2 3 3 ,  C3333 and their values are 

Values of C:j are given by 

c:: = c;; = c:: = v+2p, 

1 
c33 2 2  - - v- 

sin28' C:: = vsin2B. 

The nonvanishing components of the energy-momentum tensor are given by 
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From (2.2)-(2.5) and (3.6)-(3.9), we have 

e-"(:-$) +J5 1 = p. 

e-" = l-+r2p+T CO 

From (3.12) we have 

where CO is a constant of integration. 
To remove the singularity at the origin we put CO = 0. Thus 

e-' = 1-+r2p. 

From (3.14) and (3.10) we have 

which has a solution of the form 

e@ = (1-~r2p)- ' i2  exp 3(v+2p)r(l-ea)dr . is 1 
Hence the Schwarzschild line element in an elastic medium is given by 

ds2 = + (1  -$r2p)-' dr2 + r2(d02 + sin28 dd2) 

-(1 -$r2p)-'I2 exp i ( v+2p)r ( l  -e") dr 

(3.10) 

(3.1 1 )  

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

In order that the solution may be real we must have r2 < 3/p, which puts an upper 
limit on the possible size of a sphere of given density and on the mass of the sphere of 
given radius. 

In order that equations (3.10)-(3.12) be consistent, they must satisfy the relation 

G j i j  = - T i i j  = 0. (3.17) 

The left-hand side of the above equation already satisfies this condition. For the 
right-hand side we have 

that is, 

( 3 . 1 7 ~ )  

This equation determines a relation between p, v and p which stands for the 'equation 
of state' for the elasticity tensor (1.7). 
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The field outside the sphere is empty and is given by Schwarzschild's exterior line 
element 

ds2 = 1-- d r 2 + r 2 d 0 2 + r 2  sin28d$2- (3.18) ( 2:)-1 

The internal field (3.16) must fit at the boundary r = a with the external field for which 
we require that g i j  and T,' be continuous at r = a (Synge 1960). We thus have the three 
conditions 

m = &a2p, 

v(a) + 2p(a) = 0, 

and 

~ ~ ~ r ( v + 2 p ) ( 1 - e U ) d r  = f l n  1-- . i 2:1 

(3.19) 

(3.20) 

(3.21) 

From (3.19) we determine the value of m when the radius and the density are given. 
Equations (3.20) and (3.21) are two conditions that the function v+2p has to satisfy 
at the boundary. When such a function has been chosen the equation (3.17a) then 
uniquely determines the scalars v and p. 
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